

    
      
          
            
  
Catalyst
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 [https://github.com/catalyst-team/catalyst]PyTorch framework for Deep Learning research and development.
It was developed with a focus on reproducibility,
fast experimentation and code/ideas reusing.
Being able to research/develop something new,
rather than write another regular train loop.

Break the cycle - use the Catalyst [https://github.com/catalyst-team/catalyst]!


	Project manifest [https://github.com/catalyst-team/catalyst/blob/master/MANIFEST.md]. Part of PyTorch Ecosystem [https://pytorch.org/ecosystem/]. Part of Catalyst Ecosystem [https://docs.google.com/presentation/d/1D-yhVOg6OXzjo9K_-IS5vSHLPIUxp1PEkFGnpRcNCNU/edit?usp=sharing]:

	
	Alchemy [https://github.com/catalyst-team/alchemy] - Experiments logging & visualization


	Catalyst [https://github.com/catalyst-team/catalyst] - Accelerated DL R&D


	Reaction [https://github.com/catalyst-team/reaction] - Convenient DL serving








Catalyst at AI Landscape [https://landscape.lfai.foundation/selected=catalyst].


Getting started

import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from catalyst import dl
from catalyst.utils import metrics

model = torch.nn.Linear(28 * 28, 10)
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32),
    "valid": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
}

class CustomRunner(dl.Runner):

    def predict_batch(self, batch):
        # model inference step
        return self.model(batch[0].to(self.device).view(batch[0].size(0), -1))

    def _handle_batch(self, batch):
        # model train/valid step
        x, y = batch
        y_hat = self.model(x.view(x.size(0), -1))

        loss = F.cross_entropy(y_hat, y)
        accuracy01, accuracy03 = metrics.accuracy(y_hat, y, topk=(1, 3))
        self.state.batch_metrics.update(
            {"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03}
        )

        if self.state.is_train_loader:
            loss.backward()
            self.state.optimizer.step()
            self.state.optimizer.zero_grad()

runner = CustomRunner()
# model training
runner.train(
    model=model,
    optimizer=optimizer,
    loaders=loaders,
    logdir="./logs",
    num_epochs=5,
    verbose=True,
    load_best_on_end=True,
)
# model inference
for prediction in runner.predict_loader(loader=loaders["valid"]):
    assert prediction.detach().cpu().numpy().shape[-1] == 10
# model tracing
traced_model = runner.trace(loader=loaders["valid"])






	Customizing what happens in train [https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/customizing_what_happens_in_train.ipynb]


	Demo with minimal examples for ML, CV, NLP, GANs and RecSys [https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/demo.ipynb]


	For Catalyst.RL introduction, please follow Catalyst.RL repo [https://github.com/catalyst-team/catalyst-rl].







Overview

Catalyst helps you write compact
but full-featured Deep Learning pipelines in a few lines of code.
You get a training loop with metrics, early-stopping, model checkpointing
and other features without the boilerplate.


Installation

Common installation:

pip install -U catalyst





More specific with additional requirements:

pip install catalyst[ml]         # installs DL+ML based catalyst
pip install catalyst[cv]         # installs DL+CV based catalyst
pip install catalyst[nlp]        # installs DL+NLP based catalyst
pip install catalyst[ecosystem]  # installs Catalyst.Ecosystem
pip install catalyst[contrib]    # installs DL+contrib based catalyst
pip install catalyst[all]        # installs everything
# and master version installation
pip install git+https://github.com/catalyst-team/catalyst@master --upgrade





Catalyst is compatible with: Python 3.6+. PyTorch 1.0.0+.




Features


	Universal train/inference loop.


	Configuration files for model/data hyperparameters.


	Reproducibility – all source code and environment variables will be saved.


	Callbacks – reusable train/inference pipeline parts with easy customization.


	Training stages support.


	Deep Learning best practices - SWA, AdamW, Ranger optimizer, OneCycle, and more.


	Developments best practices - fp16 support, distributed training, slurm.







Structure


	contrib - additional modules contributed by Catalyst users.


	core - framework core with main abstractions - Experiment, Runner, Callback and State.


	data - useful tools and scripts for data processing.


	dl – runner for training and inference, all of the classic ML and CV/NLP/RecSys metrics and a variety of callbacks for training, validation and inference of neural networks.


	utils - typical utils for Deep Learning research.







Tests

All the Catalyst code is tested rigorously with every new PR [https://github.com/catalyst-team/catalyst/tree/master/tests].

In fact, we train a number of different models for various of tasks -
image classification, image segmentation, text classification, GAN training.
During the tests, we compare their convergence metrics in order to verify
the correctness of the training procedure and its reproducibility.

Overall, Catalyst guarantees fully tested, correct and reproducible
best practices for the automated parts.




Tutorials


	Demo with minimal examples [https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/demo.ipynb] for ML, CV, NLP, GANs and RecSys


	Detailed classification tutorial [https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/classification-tutorial.ipynb]


	Advanced segmentation tutorial [https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/segmentation-tutorial.ipynb]


	Comprehensive classification pipeline [https://github.com/catalyst-team/classification]


	Binary and semantic segmentation pipeline [https://github.com/catalyst-team/segmentation]


	Beyond fashion: Deep Learning with Catalyst (Config API) [https://evilmartians.com/chronicles/beyond-fashion-deep-learning-with-catalyst]


	Tutorial from Notebook API to Config API (RU) [https://github.com/Bekovmi/Segmentation_tutorial]




In the examples [https://github.com/catalyst-team/catalyst/tree/master/examples] of the repository, you can find advanced tutorials and Catalyst best practices.






Community


Contribution guide

We appreciate all contributions.
If you are planning to contribute back bug-fixes,
please do so without any further discussion.
If you plan to contribute new features, utility functions or extensions,
please first open an issue and discuss the feature with us.

Please see the contribution guide [https://github.com/catalyst-team/catalyst/blob/master/CONTRIBUTING.md] for more information.

By participating in this project, you agree to abide by its Code of Conduct [https://github.com/catalyst-team/catalyst/blob/master/CODE_OF_CONDUCT.md].




User feedback


	We have created catalyst.team.core@gmail.com for “user feedback”.

	
	If you like the project and want to say thanks, this the right place.


	If you would like to start a collaboration between your team and Catalyst team to do better Deep Learning R&D - you are always welcome.


	If you just don’t like Github issues and this ways suits you better - feel free to email us.


	Finally, if you do not like something, please, share it with us and we can see how to improve it.








We appreciate any type of feedback. Thank you!




Citation

Please use this bibtex if you want to cite this repository in your publications:

@misc{catalyst,
    author = {Kolesnikov, Sergey},
    title = {Accelerated DL R&D},
    year = {2018},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/catalyst-team/catalyst}},
}
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Examples


Tutorials


	
	classification tutorial [https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/classification-tutorial.ipynb]

	
	dataset preparation (raw images -> train/valid/infer splits)


	augmentations usage example


	pretrained model finetuning


	various classification metrics


	metrics visualizaiton


	FocalLoss and OneCycle usage examples


	class imbalance handling


	model inference










	
	segmentation tutorial [https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/segmentation-tutorial.ipynb]

	
	car segmentation dataset


	augmentations with albumentations [https://github.com/albu/albumentations] library


	training in FP16 with NVIDIA Apex [https://github.com/NVIDIA/apex]


	using segmentation models from catalyst/contrib/models/cv/segmentation


	training with multiple criterion (Dice + IoU + BCE) example


	Lookahead + RAdam optimizer usage example


	tensorboard logs visualization


	predictions visualization


	Test-time augmentations with ttach [https://github.com/qubvel/ttach] library















Pipelines


	
	Full description of configs with comments:

	
	Eng [https://github.com/catalyst-team/catalyst/blob/master/examples/configs/config-description-eng.yml]


	Rus [https://github.com/catalyst-team/catalyst/blob/master/examples/configs/config-description-rus.yml]










	
	classification pipeline [https://github.com/catalyst-team/classification]

	
	classification model training and inference


	different augmentations and stages usage


	metrics visualization with tensorboard










	
	segmentation pipeline [https://github.com/catalyst-team/segmentation]

	
	binary and semantic segmentation with U-Net


	model training and inference


	different augmentations and stages usage


	metrics visualization with tensorboard















RL tutorials & pipelines

For Reinforcement Learning examples check out our Catalyst.RL repo [https://github.com/catalyst-team/catalyst-rl].







          

      

      

    

  

    
      
          
            
  
Distributed training

If you have multiple GPUs,
the most reliable way to use all of them for training is to use the distributed package from pytorch.
To help you, there is a distributed helpers in Catalyst to make it really easy.

Note, that current distributed implementation requires you
to run only training procedure in your python scripts.


Prepare your script

Distributed training doesn’t work in a notebook, so prepare a script to run the training.
For instance, here is a minimal script that trains a linear regression model.

import torch
from torch.utils.data import DataLoader, TensorDataset

from catalyst.dl import SupervisedRunner

# experiment setup
logdir = "./logdir"
num_epochs = 8

# data
num_samples, num_features = int(1e4), int(1e1)
X, y = torch.rand(num_samples, num_features), torch.rand(num_samples)
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, 1)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

# model training
runner = SupervisedRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    logdir=logdir,
    num_epochs=num_epochs,
    verbose=True,
)





Link to the projector script. [https://github.com/catalyst-team/catalyst/blob/master/tests/_tests_scripts/dl_z_docs_distributed_0.py]




Stage 1 - I just want distributed

In case you want to run it fast and ugly, with minimal changes,
you can just pass distributed=True to .train call

import torch
from torch.utils.data import DataLoader, TensorDataset

from catalyst.dl import SupervisedRunner

# data
num_samples, num_features = int(1e4), int(1e1)
X, y = torch.rand(num_samples, num_features), torch.rand(num_samples)
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, 1)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

# model training
runner = SupervisedRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    logdir="./logs/example_1",
    num_epochs=8,
    verbose=True,
    distributed=True,
)





Link to the stage-1 script. [https://github.com/catalyst-team/catalyst/blob/master/tests/_tests_scripts/dl_z_docs_distributed_1.py]

In this way Catalyst
will try to automatically make your loaders work in distributed setup
and will run experiment training.


	Nevertheless it has several disadvantages,

	
	you create your loader again and again with each distributed worker,
+1 for master scripts with all processes joined.


	you can’t understand what is going under the hood of distributed=True


	we can’t always transfer your loaders to distributed mode correctly











Case 2 - We are going deeper

Let’s make it more reusable:

import torch
from torch.utils.data import TensorDataset

from catalyst.dl import SupervisedRunner

# data
num_samples, num_features = int(1e4), int(1e1)
X = torch.rand(int(1e4), num_features)
y = torch.rand(X.shape[0])
dataset = TensorDataset(X, y)

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, 1)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

runner = SupervisedRunner()
runner.train(
    model=model,
    datasets={
        "batch_size": 32,
        "num_workers": 1,
        "train": dataset,
        "valid": dataset,
    },
    criterion=criterion,
    optimizer=optimizer,
    logdir="./logs/example_2",
    num_epochs=8,
    verbose=True,
    distributed=True,
)





Link to the stage-2 script. [https://github.com/catalyst-team/catalyst/blob/master/tests/_tests_scripts/dl_z_docs_distributed_2.py]

By this way we easily can transfer your datasets to distributed mode.
But again, you recreate your dataset with each worker. Can we make it better?




Case 3 - Best practices for distributed training

Yup, check this one, distributed training like a pro:

import torch
from torch.utils.data import TensorDataset

from catalyst.dl import SupervisedRunner, utils

def datasets_fn(num_features: int):
    X = torch.rand(int(1e4), num_features)
    y = torch.rand(X.shape[0])
    dataset = TensorDataset(X, y)
    return {"train": dataset, "valid": dataset}

def train():
    num_features = int(1e1)
    # model, criterion, optimizer, scheduler
    model = torch.nn.Linear(num_features, 1)
    criterion = torch.nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters())
    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

    runner = SupervisedRunner()
    runner.train(
        model=model,
        datasets={
            "batch_size": 32,
            "num_workers": 1,
            "get_datasets_fn": datasets_fn,
            "num_features": num_features,
        },
        criterion=criterion,
        optimizer=optimizer,
        scheduler=scheduler,
        logdir="./logs/example_3",
        num_epochs=8,
        verbose=True,
        distributed=False,
    )

utils.distributed_cmd_run(train)





Link to the stage-3 script. [https://github.com/catalyst-team/catalyst/blob/master/tests/_tests_scripts/dl_z_docs_distributed_3.py]


	Advantages,

	
	you have control about what is going on with manual call of
utils.distributed_cmd_run.


	you don’t duplicate the data - it calls when it really needed


	we still can easily transfer them to distributed mode,
thanks to Datasets usage











Launch your training

In your terminal,
type the following line (adapt script_name to your script name ending with .py).

python {script_name}





You can vary availble GPUs with CUDA_VIBIBLE_DEVICES option, for example,

# run only on 1st and 2nd GPUs
CUDA_VISIBLE_DEVICES="1,2" python {script_name}





# run only on 0, 1st and 3rd GPUs
CUDA_VISIBLE_DEVICES="0,1,3" python {script_name}





What will happen is that the same model will be copied on all your available GPUs.
During training, the full dataset will randomly be split between the GPUs
(that will change at each epoch).
Each GPU will grab a batch (on that fractioned dataset),
pass it through the model, compute the loss then back-propagate the gradients.
Then they will share their results and average them,
which means like your training is the equivalent of a training
with a batch size of `batch_size x num_gpus
(where batch_size is what you used in your script).

Since they all have the same gradients at this stage,
they will al perform the same update,
so the models will still be the same after this step.
Then training continues with the next batch,
until the number of desired iterations is done.

During training Catalyst will automatically average all metrics
and log them on Master node only. Same logic used for model checkpointing.




Slurm support

Catalyst supports distributed training of neural networks on HPC under slurm control.
Catalyst automatically allocates roles between nodes and syncs them.
This allows to run experiments without any changes in the configuration file or model code.
We recommend using nodes with the same number and type of GPU.
You can run the experiment with the following command:

# Catalyst Notebook API
srun -N 2 --gres=gpu:3 --exclusive --mem=256G python run.py
# Catalyst Config API
srun -N 2 --gres=gpu:3 --exclusive --mem=256G catalyst-dl run -C config.yml





In this command,
we request two nodes with 3 GPUs on each node in exclusive mode,
i.e. we request all available CPUs on the nodes.
Each node will be allocated 256G.
Note that specific startup parameters using srun
may change depending on the specific cluster and slurm settings.
For more fine-tuning, we recommend reading the slurm documentation.







          

      

      

    

  

    
      
          
            
  
Contribution


Issues

We use GitHub issues [https://github.com/catalyst-team/catalyst/issues] for bug reports and feature requests.


Step-by-step guide


New feature


	Make an issue with your feature description;


	We shall discuss the design and its implementation details;


	Once we agree that the plan looks good, go ahead and implement it.







Bugfix


	Goto GitHub issues [https://github.com/catalyst-team/catalyst/issues];


	Pick an issue and comment on the task that you want to work on this
feature;


	If you need more context on a specific issue, please ask, and we will
discuss the details.




Once you finish implementing a feature or bugfix, please send a Pull
Request.

If you are not familiar with creating a Pull Request, here are some
guides:


	http://stackoverflow.com/questions/14680711/how-to-do-a-github-pull-request


	https://help.github.com/articles/creating-a-pull-request/







Contribution best practices


	Install requirements




brew install bash # for MacOS users
pip install -r requirements/requirements.txt -r requirements/requirements-dev.txt






	Break your work into small, single-purpose updates if possible. It’s much harder to merge in a large change with a lot of disjoint features.


	Submit the update as a GitHub pull request against the master branch.


	Make sure that you provide docstrings for all your new methods and classes.


	Add new unit tests for your code.


	Check the codestyle


	Make sure that your code passes the unit tests









Codestyle

Do not forget to check the codestyle for your PR with

catalyst-make-codestyle && catalyst-check-codestyle





Make sure to have your python packages complied with requirements/requirements.txt and requirements/requirements-dev.txt to get codestyle run clean.




Unit tests

Do not forget to check that your code passes the unit tests

pytest .










Documentation

Catalyst uses Google style [http://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html] for formatting docstrings [https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings]. Length of line
inside docstrings block must be limited to 80 characters to fit into
Jupyter documentation popups.


Check that you have written working docs

make check-docs





The command requires Sphinx and some sphinx-specific libraries.
If you don’t want to install them, you may make a catalyst-dev container

make docker-dev
docker run \\
    -v `pwd`/:/workspace/ \\
    catalyst-dev:latest \\
    bash -c "make check-docs"








To build docs add environment variable REMOVE_BUILDS=0

REMOVE_BUILDS=0 make check-docs





or through docker

docker run \\
    -v `pwd`/:/workspace/ \\
    catalyst-dev:latest \\
    bash -c "REMOVE_BUILDS=0 make check-docs"





The docs will be stored in builds/ folder.
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Data

Data subpackage has data preprocessers and dataloader abstractions.


Scripts

You can use scripts typing catalyst-data in your terminal.
For example:

$ catalyst-data tag2label --help








Augmentor


	
class catalyst.data.augmentor.Augmentor(dict_key: str, augment_fn: Callable, input_key: str = None, output_key: str = None, **kwargs)

	Augmentation abstraction to use with data dictionaries.


	
__init__(dict_key: str, augment_fn: Callable, input_key: str = None, output_key: str = None, **kwargs)

	
	Parameters

	
	dict_key (str) – key to transform


	augment_fn (Callable) – augmentation function to use


	input_key (str) – augment_fn input key


	output_key (str) – augment_fn output key


	**kwargs – default kwargs for augmentations function

















	
class catalyst.data.augmentor.AugmentorCompose(key2augment_fn: Dict[str, Callable])

	Compose augmentors.


	
__init__(key2augment_fn: Dict[str, Callable])

	
	Parameters

	key2augment_fn (Dict[str, Callable]) – mapping from input key
to augmentation function to apply














	
class catalyst.data.augmentor.AugmentorKeys(dict2fn_dict: Union[Dict[str, str], List[str]], augment_fn: Callable)

	Augmentation abstraction to match input and augmentations keys.


	
__init__(dict2fn_dict: Union[Dict[str, str], List[str]], augment_fn: Callable)

	
	Parameters

	
	dict2fn_dict (Dict[str, str]) – keys matching dict
{input_key: augment_fn_key}. For example:
{"image": "image", "mask": "mask"}


	augment_fn – augmentation function



















Collate Functions




Dataset




Reader

Readers are the abstraction for your dataset. They can open an elem from the dataset and transform it to data, needed by your network.
For example open image by path, or read string and tokenize it.




Sampler
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Tools


Frozen Class

Frozen class.
Example of usage can be found in catalyst.core.state.State.


	
class catalyst.tools.frozen_class.FrozenClass

	Bases: object

Class which prohibit __setattr__ on existing attributes.

Examples

>>> class State(FrozenClass):












Registry

Registry.
.. todo:: Representative docstring for this module


	
class catalyst.tools.registry.Registry(default_name_key: str, default_meta_factory: Callable[[Union[Type[CT_co], Callable[[...], Any]], Tuple, Mapping[KT, VT_co]], Any] = <function _default_meta_factory>)

	Bases: collections.abc.MutableMapping

Universal class allowing to add and access various factories by name.


	
__init__(default_name_key: str, default_meta_factory: Callable[[Union[Type[CT_co], Callable[[...], Any]], Tuple, Mapping[KT, VT_co]], Any] = <function _default_meta_factory>)

	
	Parameters

	
	default_name_key (str) – Default key containing factory name when
creating from config


	default_meta_factory (MetaFactory) – default object
that calls factory. Optional. Default just calls factory.













	
add(factory: Union[Type[CT_co], Callable[[...], Any]] = None, *factories, name: str = None, **named_factories) → Union[Type[CT_co], Callable[[...], Any]]

	Adds factory to registry with it’s __name__ attribute or provided
name. Signature is flexible.


	Parameters

	
	factory – Factory instance


	factories – More instances


	name – Provided name for first instance. Use only when pass
single instance.


	named_factories – Factory and their names as kwargs






	Returns

	First factory passed



	Return type

	(Factory)










	
add_from_module(module, prefix: Union[str, List[str]] = None) → None

	Adds all factories present in module.
If __all__ attribute is present, takes ony what mentioned in it.


	Parameters

	
	module – module to scan


	prefix (Union[str, List[str]]) – prefix string for all the module’s
factories. If prefix is a list, all values will be treated
as aliases.













	
all() → List[str]

	
	Returns

	list of names of registered items










	
get(name: str) → Union[Type[CT_co], Callable[[...], Any], None]

	Retrieves factory, without creating any objects with it
or raises error.


	Parameters

	name – factory name



	Returns

	factory by name



	Return type

	Factory










	
get_from_params(*, meta_factory=None, **kwargs) → Union[Any, Tuple[Any, Mapping[str, Any]]]

	Creates instance based in configuration dict with instantiation_fn.
If config[name_key] is None, None is returned.


	Parameters

	
	meta_factory – Function that calls factory the right way.
If not provided, default is used.


	**kwargs – additional kwargs for factory






	Returns

	result of calling instantiate_fn(factory, **config)










	
get_if_str(obj: Union[str, Type[CT_co], Callable[[...], Any]])

	Returns object from the registry if obj type is string.






	
get_instance(name: str, *args, meta_factory=None, **kwargs)

	Creates instance by calling specified factory
with instantiate_fn.


	Parameters

	
	name – factory name


	meta_factory – Function that calls factory the right way.
If not provided, default is used


	args – args to pass to the factory


	**kwargs – kwargs to pass to the factory






	Returns

	created instance










	
late_add(cb: Callable[[Registry], None])

	Allows to prevent cycle imports by delaying some imports till next
registry query.


	Parameters

	cb – Callback receives registry and must call it’s methods to
register factories










	
len() → int

	
	Returns

	length of registered items














	
exception catalyst.tools.registry.RegistryException(message)

	Bases: Exception

Exception class for all registry errors.


	
__init__(message)

	Init.


	Parameters

	message – exception message
















Time Manager

Simple timer.


	
class catalyst.tools.time_manager.TimeManager

	Bases: object

@TODO: Docs. Contribution is welcome.


	
__init__()

	@TODO: Docs. Contribution is welcome.






	
reset() → None

	Reset all previous timers.






	
start(name: str) → None

	Starts timer name.


	Parameters

	name (str) – name of a timer










	
stop(name: str) → None

	Stops timer name.


	Parameters

	name (str) – name of a timer
















Typing






Metrics


Accuracy




Dice




F1 score




Focal




IoU






Meters

The meters from torchnet.meters.

Every meter implements catalyst.utils.meters.meter.Meter interface.


Meter




AP Meter




AUC Meter




Average Value Meter




Class Error Meter




Confusion Meter




Map Meter




Moving Average Value Meter




MSE Meter




Precision-Recall-F1 Meter
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