

Catalyst

[image: Catalyst logo]
 [https://github.com/catalyst-team/catalyst]PyTorch framework for Deep Learning research and development.
It was developed with a focus on reproducibility,
fast experimentation and code/ideas reusing.
Being able to research/develop something new,
rather than write another regular train loop.

Break the cycle - use the Catalyst [https://github.com/catalyst-team/catalyst]!

	Project manifest [https://github.com/catalyst-team/catalyst/blob/master/MANIFEST.md]. Part of PyTorch Ecosystem [https://pytorch.org/ecosystem/]. Part of Catalyst Ecosystem [https://docs.google.com/presentation/d/1D-yhVOg6OXzjo9K_-IS5vSHLPIUxp1PEkFGnpRcNCNU/edit?usp=sharing]:

	
	Alchemy [https://github.com/catalyst-team/alchemy] - Experiments logging & visualization

	Catalyst [https://github.com/catalyst-team/catalyst] - Accelerated DL R&D

	Reaction [https://github.com/catalyst-team/reaction] - Convenient DL serving

Catalyst at AI Landscape [https://landscape.lfai.foundation/selected=catalyst].

Getting started

import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from catalyst import dl
from catalyst.utils import metrics

model = torch.nn.Linear(28 * 28, 10)
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)

loaders = {
 "train": DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32),
 "valid": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
}

class CustomRunner(dl.Runner):

 def predict_batch(self, batch):
 # model inference step
 return self.model(batch[0].to(self.device).view(batch[0].size(0), -1))

 def _handle_batch(self, batch):
 # model train/valid step
 x, y = batch
 y_hat = self.model(x.view(x.size(0), -1))

 loss = F.cross_entropy(y_hat, y)
 accuracy01, accuracy03 = metrics.accuracy(y_hat, y, topk=(1, 3))
 self.state.batch_metrics.update(
 {"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03}
)

 if self.state.is_train_loader:
 loss.backward()
 self.state.optimizer.step()
 self.state.optimizer.zero_grad()

runner = CustomRunner()
model training
runner.train(
 model=model,
 optimizer=optimizer,
 loaders=loaders,
 logdir="./logs",
 num_epochs=5,
 verbose=True,
 load_best_on_end=True,
)
model inference
for prediction in runner.predict_loader(loader=loaders["valid"]):
 assert prediction.detach().cpu().numpy().shape[-1] == 10
model tracing
traced_model = runner.trace(loader=loaders["valid"])

	Customizing what happens in train [https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/customizing_what_happens_in_train.ipynb]

	Demo with minimal examples for ML, CV, NLP, GANs and RecSys [https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/demo.ipynb]

	For Catalyst.RL introduction, please follow Catalyst.RL repo [https://github.com/catalyst-team/catalyst-rl].

Overview

Catalyst helps you write compact
but full-featured Deep Learning pipelines in a few lines of code.
You get a training loop with metrics, early-stopping, model checkpointing
and other features without the boilerplate.

Installation

Common installation:

pip install -U catalyst

More specific with additional requirements:

pip install catalyst[ml] # installs DL+ML based catalyst
pip install catalyst[cv] # installs DL+CV based catalyst
pip install catalyst[nlp] # installs DL+NLP based catalyst
pip install catalyst[ecosystem] # installs Catalyst.Ecosystem
pip install catalyst[contrib] # installs DL+contrib based catalyst
pip install catalyst[all] # installs everything
and master version installation
pip install git+https://github.com/catalyst-team/catalyst@master --upgrade

Catalyst is compatible with: Python 3.6+. PyTorch 1.0.0+.

Features

	Universal train/inference loop.

	Configuration files for model/data hyperparameters.

	Reproducibility – all source code and environment variables will be saved.

	Callbacks – reusable train/inference pipeline parts with easy customization.

	Training stages support.

	Deep Learning best practices - SWA, AdamW, Ranger optimizer, OneCycle, and more.

	Developments best practices - fp16 support, distributed training, slurm.

Structure

	contrib - additional modules contributed by Catalyst users.

	core - framework core with main abstractions - Experiment, Runner, Callback and State.

	data - useful tools and scripts for data processing.

	dl – runner for training and inference, all of the classic ML and CV/NLP/RecSys metrics and a variety of callbacks for training, validation and inference of neural networks.

	utils - typical utils for Deep Learning research.

Tests

All the Catalyst code is tested rigorously with every new PR [https://github.com/catalyst-team/catalyst/tree/master/tests].

In fact, we train a number of different models for various of tasks -
image classification, image segmentation, text classification, GAN training.
During the tests, we compare their convergence metrics in order to verify
the correctness of the training procedure and its reproducibility.

Overall, Catalyst guarantees fully tested, correct and reproducible
best practices for the automated parts.

Tutorials

	Demo with minimal examples [https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/demo.ipynb] for ML, CV, NLP, GANs and RecSys

	Detailed classification tutorial [https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/classification-tutorial.ipynb]

	Advanced segmentation tutorial [https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/segmentation-tutorial.ipynb]

	Comprehensive classification pipeline [https://github.com/catalyst-team/classification]

	Binary and semantic segmentation pipeline [https://github.com/catalyst-team/segmentation]

	Beyond fashion: Deep Learning with Catalyst (Config API) [https://evilmartians.com/chronicles/beyond-fashion-deep-learning-with-catalyst]

	Tutorial from Notebook API to Config API (RU) [https://github.com/Bekovmi/Segmentation_tutorial]

In the examples [https://github.com/catalyst-team/catalyst/tree/master/examples] of the repository, you can find advanced tutorials and Catalyst best practices.

Community

Contribution guide

We appreciate all contributions.
If you are planning to contribute back bug-fixes,
please do so without any further discussion.
If you plan to contribute new features, utility functions or extensions,
please first open an issue and discuss the feature with us.

Please see the contribution guide [https://github.com/catalyst-team/catalyst/blob/master/CONTRIBUTING.md] for more information.

By participating in this project, you agree to abide by its Code of Conduct [https://github.com/catalyst-team/catalyst/blob/master/CODE_OF_CONDUCT.md].

User feedback

	We have created catalyst.team.core@gmail.com for “user feedback”.

	
	If you like the project and want to say thanks, this the right place.

	If you would like to start a collaboration between your team and Catalyst team to do better Deep Learning R&D - you are always welcome.

	If you just don’t like Github issues and this ways suits you better - feel free to email us.

	Finally, if you do not like something, please, share it with us and we can see how to improve it.

We appreciate any type of feedback. Thank you!

Citation

Please use this bibtex if you want to cite this repository in your publications:

@misc{catalyst,
 author = {Kolesnikov, Sergey},
 title = {Accelerated DL R&D},
 year = {2018},
 publisher = {GitHub},
 journal = {GitHub repository},
 howpublished = {\url{https://github.com/catalyst-team/catalyst}},
}

Indices and tables

	Index

	Module Index

	Search Page

API

	Core
	Core
	Experiment

	Runner

	Callback

	State

	Callbacks
	Checkpoint

	Criterion

	Early Stop

	Exception

	Logging

	Metrics

	Optimizer

	Scheduler

	Timer

	Validation

	Registry

	Utils

	DL
	Experiment

	Runner

	Callbacks
	Metrics

	Utils

	Registry

	Data
	Scripts

	Augmentor

	Collate Functions

	Dataset

	Reader

	Sampler

	Utilities
	Utils
	Checkpoint

	Config

	Distributed

	Hash

	Initialization

	Misc

	Numpy

	Parser

	Scripts

	Seed

	Sys

	Torch

	Tools
	Frozen Class

	Registry

	Time Manager

	Typing

	Metrics
	Accuracy

	Dice

	F1 score

	Focal

	IoU

	Meters
	Meter

	AP Meter

	AUC Meter

	Average Value Meter

	Class Error Meter

	Confusion Meter

	Map Meter

	Moving Average Value Meter

	MSE Meter

	Precision-Recall-F1 Meter

	Contrib
	DL
	Callbacks

	NN
	Criterion

	Modules

	Optimizers

	Schedulers

	Models
	Segmentation

	Registry

	Utilities
	Argparse

	Compression

	Confusion Matrix

	Dataset

	Misc

	Pandas

	Parallel

	Plotly

	Serialization

	Visualization

	Tools
	Tensorboard

Examples

Tutorials

	
	classification tutorial [https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/classification-tutorial.ipynb]

	
	dataset preparation (raw images -> train/valid/infer splits)

	augmentations usage example

	pretrained model finetuning

	various classification metrics

	metrics visualizaiton

	FocalLoss and OneCycle usage examples

	class imbalance handling

	model inference

	
	segmentation tutorial [https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catalyst-team/catalyst/blob/master/examples/notebooks/segmentation-tutorial.ipynb]

	
	car segmentation dataset

	augmentations with albumentations [https://github.com/albu/albumentations] library

	training in FP16 with NVIDIA Apex [https://github.com/NVIDIA/apex]

	using segmentation models from catalyst/contrib/models/cv/segmentation

	training with multiple criterion (Dice + IoU + BCE) example

	Lookahead + RAdam optimizer usage example

	tensorboard logs visualization

	predictions visualization

	Test-time augmentations with ttach [https://github.com/qubvel/ttach] library

Pipelines

	
	Full description of configs with comments:

	
	Eng [https://github.com/catalyst-team/catalyst/blob/master/examples/configs/config-description-eng.yml]

	Rus [https://github.com/catalyst-team/catalyst/blob/master/examples/configs/config-description-rus.yml]

	
	classification pipeline [https://github.com/catalyst-team/classification]

	
	classification model training and inference

	different augmentations and stages usage

	metrics visualization with tensorboard

	
	segmentation pipeline [https://github.com/catalyst-team/segmentation]

	
	binary and semantic segmentation with U-Net

	model training and inference

	different augmentations and stages usage

	metrics visualization with tensorboard

RL tutorials & pipelines

For Reinforcement Learning examples check out our Catalyst.RL repo [https://github.com/catalyst-team/catalyst-rl].

Distributed training

If you have multiple GPUs,
the most reliable way to use all of them for training is to use the distributed package from pytorch.
To help you, there is a distributed helpers in Catalyst to make it really easy.

Note, that current distributed implementation requires you
to run only training procedure in your python scripts.

Prepare your script

Distributed training doesn’t work in a notebook, so prepare a script to run the training.
For instance, here is a minimal script that trains a linear regression model.

import torch
from torch.utils.data import DataLoader, TensorDataset

from catalyst.dl import SupervisedRunner

experiment setup
logdir = "./logdir"
num_epochs = 8

data
num_samples, num_features = int(1e4), int(1e1)
X, y = torch.rand(num_samples, num_features), torch.rand(num_samples)
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, 1)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

model training
runner = SupervisedRunner()
runner.train(
 model=model,
 criterion=criterion,
 optimizer=optimizer,
 scheduler=scheduler,
 loaders=loaders,
 logdir=logdir,
 num_epochs=num_epochs,
 verbose=True,
)

Link to the projector script. [https://github.com/catalyst-team/catalyst/blob/master/tests/_tests_scripts/dl_z_docs_distributed_0.py]

Stage 1 - I just want distributed

In case you want to run it fast and ugly, with minimal changes,
you can just pass distributed=True to .train call

import torch
from torch.utils.data import DataLoader, TensorDataset

from catalyst.dl import SupervisedRunner

data
num_samples, num_features = int(1e4), int(1e1)
X, y = torch.rand(num_samples, num_features), torch.rand(num_samples)
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, 1)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

model training
runner = SupervisedRunner()
runner.train(
 model=model,
 criterion=criterion,
 optimizer=optimizer,
 scheduler=scheduler,
 loaders=loaders,
 logdir="./logs/example_1",
 num_epochs=8,
 verbose=True,
 distributed=True,
)

Link to the stage-1 script. [https://github.com/catalyst-team/catalyst/blob/master/tests/_tests_scripts/dl_z_docs_distributed_1.py]

In this way Catalyst
will try to automatically make your loaders work in distributed setup
and will run experiment training.

	Nevertheless it has several disadvantages,

	
	you create your loader again and again with each distributed worker,
+1 for master scripts with all processes joined.

	you can’t understand what is going under the hood of distributed=True

	we can’t always transfer your loaders to distributed mode correctly

Case 2 - We are going deeper

Let’s make it more reusable:

import torch
from torch.utils.data import TensorDataset

from catalyst.dl import SupervisedRunner

data
num_samples, num_features = int(1e4), int(1e1)
X = torch.rand(int(1e4), num_features)
y = torch.rand(X.shape[0])
dataset = TensorDataset(X, y)

model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, 1)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

runner = SupervisedRunner()
runner.train(
 model=model,
 datasets={
 "batch_size": 32,
 "num_workers": 1,
 "train": dataset,
 "valid": dataset,
 },
 criterion=criterion,
 optimizer=optimizer,
 logdir="./logs/example_2",
 num_epochs=8,
 verbose=True,
 distributed=True,
)

Link to the stage-2 script. [https://github.com/catalyst-team/catalyst/blob/master/tests/_tests_scripts/dl_z_docs_distributed_2.py]

By this way we easily can transfer your datasets to distributed mode.
But again, you recreate your dataset with each worker. Can we make it better?

Case 3 - Best practices for distributed training

Yup, check this one, distributed training like a pro:

import torch
from torch.utils.data import TensorDataset

from catalyst.dl import SupervisedRunner, utils

def datasets_fn(num_features: int):
 X = torch.rand(int(1e4), num_features)
 y = torch.rand(X.shape[0])
 dataset = TensorDataset(X, y)
 return {"train": dataset, "valid": dataset}

def train():
 num_features = int(1e1)
 # model, criterion, optimizer, scheduler
 model = torch.nn.Linear(num_features, 1)
 criterion = torch.nn.MSELoss()
 optimizer = torch.optim.Adam(model.parameters())
 scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

 runner = SupervisedRunner()
 runner.train(
 model=model,
 datasets={
 "batch_size": 32,
 "num_workers": 1,
 "get_datasets_fn": datasets_fn,
 "num_features": num_features,
 },
 criterion=criterion,
 optimizer=optimizer,
 scheduler=scheduler,
 logdir="./logs/example_3",
 num_epochs=8,
 verbose=True,
 distributed=False,
)

utils.distributed_cmd_run(train)

Link to the stage-3 script. [https://github.com/catalyst-team/catalyst/blob/master/tests/_tests_scripts/dl_z_docs_distributed_3.py]

	Advantages,

	
	you have control about what is going on with manual call of
utils.distributed_cmd_run.

	you don’t duplicate the data - it calls when it really needed

	we still can easily transfer them to distributed mode,
thanks to Datasets usage

Launch your training

In your terminal,
type the following line (adapt script_name to your script name ending with .py).

python {script_name}

You can vary availble GPUs with CUDA_VIBIBLE_DEVICES option, for example,

run only on 1st and 2nd GPUs
CUDA_VISIBLE_DEVICES="1,2" python {script_name}

run only on 0, 1st and 3rd GPUs
CUDA_VISIBLE_DEVICES="0,1,3" python {script_name}

What will happen is that the same model will be copied on all your available GPUs.
During training, the full dataset will randomly be split between the GPUs
(that will change at each epoch).
Each GPU will grab a batch (on that fractioned dataset),
pass it through the model, compute the loss then back-propagate the gradients.
Then they will share their results and average them,
which means like your training is the equivalent of a training
with a batch size of `batch_size x num_gpus
(where batch_size is what you used in your script).

Since they all have the same gradients at this stage,
they will al perform the same update,
so the models will still be the same after this step.
Then training continues with the next batch,
until the number of desired iterations is done.

During training Catalyst will automatically average all metrics
and log them on Master node only. Same logic used for model checkpointing.

Slurm support

Catalyst supports distributed training of neural networks on HPC under slurm control.
Catalyst automatically allocates roles between nodes and syncs them.
This allows to run experiments without any changes in the configuration file or model code.
We recommend using nodes with the same number and type of GPU.
You can run the experiment with the following command:

Catalyst Notebook API
srun -N 2 --gres=gpu:3 --exclusive --mem=256G python run.py
Catalyst Config API
srun -N 2 --gres=gpu:3 --exclusive --mem=256G catalyst-dl run -C config.yml

In this command,
we request two nodes with 3 GPUs on each node in exclusive mode,
i.e. we request all available CPUs on the nodes.
Each node will be allocated 256G.
Note that specific startup parameters using srun
may change depending on the specific cluster and slurm settings.
For more fine-tuning, we recommend reading the slurm documentation.

Contribution

Issues

We use GitHub issues [https://github.com/catalyst-team/catalyst/issues] for bug reports and feature requests.

Step-by-step guide

New feature

	Make an issue with your feature description;

	We shall discuss the design and its implementation details;

	Once we agree that the plan looks good, go ahead and implement it.

Bugfix

	Goto GitHub issues [https://github.com/catalyst-team/catalyst/issues];

	Pick an issue and comment on the task that you want to work on this
feature;

	If you need more context on a specific issue, please ask, and we will
discuss the details.

Once you finish implementing a feature or bugfix, please send a Pull
Request.

If you are not familiar with creating a Pull Request, here are some
guides:

	http://stackoverflow.com/questions/14680711/how-to-do-a-github-pull-request

	https://help.github.com/articles/creating-a-pull-request/

Contribution best practices

	Install requirements

brew install bash # for MacOS users
pip install -r requirements/requirements.txt -r requirements/requirements-dev.txt

	Break your work into small, single-purpose updates if possible. It’s much harder to merge in a large change with a lot of disjoint features.

	Submit the update as a GitHub pull request against the master branch.

	Make sure that you provide docstrings for all your new methods and classes.

	Add new unit tests for your code.

	Check the codestyle

	Make sure that your code passes the unit tests

Codestyle

Do not forget to check the codestyle for your PR with

catalyst-make-codestyle && catalyst-check-codestyle

Make sure to have your python packages complied with requirements/requirements.txt and requirements/requirements-dev.txt to get codestyle run clean.

Unit tests

Do not forget to check that your code passes the unit tests

pytest .

Documentation

Catalyst uses Google style [http://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html] for formatting docstrings [https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings]. Length of line
inside docstrings block must be limited to 80 characters to fit into
Jupyter documentation popups.

Check that you have written working docs

make check-docs

The command requires Sphinx and some sphinx-specific libraries.
If you don’t want to install them, you may make a catalyst-dev container

make docker-dev
docker run \\
 -v `pwd`/:/workspace/ \\
 catalyst-dev:latest \\
 bash -c "make check-docs"

To build docs add environment variable REMOVE_BUILDS=0

REMOVE_BUILDS=0 make check-docs

or through docker

docker run \\
 -v `pwd`/:/workspace/ \\
 catalyst-dev:latest \\
 bash -c "REMOVE_BUILDS=0 make check-docs"

The docs will be stored in builds/ folder.

Core

	Core

	Experiment

	Runner

	Callback

	State

	Callbacks

	Checkpoint

	Criterion

	Early Stop

	Exception

	Logging

	Metrics

	Optimizer

	Scheduler

	Timer

	Validation

	Registry

	Utils

Core

Experiment

Runner

Callback

State

Callbacks

Checkpoint

Criterion

Early Stop

Exception

Logging

Metrics

Optimizer

Scheduler

Timer

Validation

Registry

Utils

DL

	Experiment

	Runner

	Callbacks

	Metrics

	Utils

	Registry

Experiment

Runner

Callbacks

Metrics

Utils

Registry

Data

Data subpackage has data preprocessers and dataloader abstractions.

Scripts

You can use scripts typing catalyst-data in your terminal.
For example:

$ catalyst-data tag2label --help

Augmentor

	
class catalyst.data.augmentor.Augmentor(dict_key: str, augment_fn: Callable, input_key: str = None, output_key: str = None, **kwargs)

	Augmentation abstraction to use with data dictionaries.

	
__init__(dict_key: str, augment_fn: Callable, input_key: str = None, output_key: str = None, **kwargs)

	
	Parameters

	
	dict_key (str) – key to transform

	augment_fn (Callable) – augmentation function to use

	input_key (str) – augment_fn input key

	output_key (str) – augment_fn output key

	**kwargs – default kwargs for augmentations function

	
class catalyst.data.augmentor.AugmentorCompose(key2augment_fn: Dict[str, Callable])

	Compose augmentors.

	
__init__(key2augment_fn: Dict[str, Callable])

	
	Parameters

	key2augment_fn (Dict[str, Callable]) – mapping from input key
to augmentation function to apply

	
class catalyst.data.augmentor.AugmentorKeys(dict2fn_dict: Union[Dict[str, str], List[str]], augment_fn: Callable)

	Augmentation abstraction to match input and augmentations keys.

	
__init__(dict2fn_dict: Union[Dict[str, str], List[str]], augment_fn: Callable)

	
	Parameters

	
	dict2fn_dict (Dict[str, str]) – keys matching dict
{input_key: augment_fn_key}. For example:
{"image": "image", "mask": "mask"}

	augment_fn – augmentation function

Collate Functions

Dataset

Reader

Readers are the abstraction for your dataset. They can open an elem from the dataset and transform it to data, needed by your network.
For example open image by path, or read string and tokenize it.

Sampler

Utilities

	Utils

	Checkpoint

	Config

	Distributed

	Hash

	Initialization

	Misc

	Numpy

	Parser

	Scripts

	Seed

	Sys

	Torch

	Tools

	Frozen Class

	Registry

	Time Manager

	Typing

	Metrics

	Accuracy

	Dice

	F1 score

	Focal

	IoU

	Meters

	Meter

	AP Meter

	AUC Meter

	Average Value Meter

	Class Error Meter

	Confusion Meter

	Map Meter

	Moving Average Value Meter

	MSE Meter

	Precision-Recall-F1 Meter

Utils

Checkpoint

Config

Distributed

Hash

Initialization

Misc

Numpy

Parser

Scripts

Seed

Sys

Torch

Tools

Frozen Class

Frozen class.
Example of usage can be found in catalyst.core.state.State.

	
class catalyst.tools.frozen_class.FrozenClass

	Bases: object

Class which prohibit __setattr__ on existing attributes.

Examples

>>> class State(FrozenClass):

Registry

Registry.
.. todo:: Representative docstring for this module

	
class catalyst.tools.registry.Registry(default_name_key: str, default_meta_factory: Callable[[Union[Type[CT_co], Callable[[...], Any]], Tuple, Mapping[KT, VT_co]], Any] = <function _default_meta_factory>)

	Bases: collections.abc.MutableMapping

Universal class allowing to add and access various factories by name.

	
__init__(default_name_key: str, default_meta_factory: Callable[[Union[Type[CT_co], Callable[[...], Any]], Tuple, Mapping[KT, VT_co]], Any] = <function _default_meta_factory>)

	
	Parameters

	
	default_name_key (str) – Default key containing factory name when
creating from config

	default_meta_factory (MetaFactory) – default object
that calls factory. Optional. Default just calls factory.

	
add(factory: Union[Type[CT_co], Callable[[...], Any]] = None, *factories, name: str = None, **named_factories) → Union[Type[CT_co], Callable[[...], Any]]

	Adds factory to registry with it’s __name__ attribute or provided
name. Signature is flexible.

	Parameters

	
	factory – Factory instance

	factories – More instances

	name – Provided name for first instance. Use only when pass
single instance.

	named_factories – Factory and their names as kwargs

	Returns

	First factory passed

	Return type

	(Factory)

	
add_from_module(module, prefix: Union[str, List[str]] = None) → None

	Adds all factories present in module.
If __all__ attribute is present, takes ony what mentioned in it.

	Parameters

	
	module – module to scan

	prefix (Union[str, List[str]]) – prefix string for all the module’s
factories. If prefix is a list, all values will be treated
as aliases.

	
all() → List[str]

	
	Returns

	list of names of registered items

	
get(name: str) → Union[Type[CT_co], Callable[[...], Any], None]

	Retrieves factory, without creating any objects with it
or raises error.

	Parameters

	name – factory name

	Returns

	factory by name

	Return type

	Factory

	
get_from_params(*, meta_factory=None, **kwargs) → Union[Any, Tuple[Any, Mapping[str, Any]]]

	Creates instance based in configuration dict with instantiation_fn.
If config[name_key] is None, None is returned.

	Parameters

	
	meta_factory – Function that calls factory the right way.
If not provided, default is used.

	**kwargs – additional kwargs for factory

	Returns

	result of calling instantiate_fn(factory, **config)

	
get_if_str(obj: Union[str, Type[CT_co], Callable[[...], Any]])

	Returns object from the registry if obj type is string.

	
get_instance(name: str, *args, meta_factory=None, **kwargs)

	Creates instance by calling specified factory
with instantiate_fn.

	Parameters

	
	name – factory name

	meta_factory – Function that calls factory the right way.
If not provided, default is used

	args – args to pass to the factory

	**kwargs – kwargs to pass to the factory

	Returns

	created instance

	
late_add(cb: Callable[[Registry], None])

	Allows to prevent cycle imports by delaying some imports till next
registry query.

	Parameters

	cb – Callback receives registry and must call it’s methods to
register factories

	
len() → int

	
	Returns

	length of registered items

	
exception catalyst.tools.registry.RegistryException(message)

	Bases: Exception

Exception class for all registry errors.

	
__init__(message)

	Init.

	Parameters

	message – exception message

Time Manager

Simple timer.

	
class catalyst.tools.time_manager.TimeManager

	Bases: object

@TODO: Docs. Contribution is welcome.

	
__init__()

	@TODO: Docs. Contribution is welcome.

	
reset() → None

	Reset all previous timers.

	
start(name: str) → None

	Starts timer name.

	Parameters

	name (str) – name of a timer

	
stop(name: str) → None

	Stops timer name.

	Parameters

	name (str) – name of a timer

Typing

Metrics

Accuracy

Dice

F1 score

Focal

IoU

Meters

The meters from torchnet.meters.

Every meter implements catalyst.utils.meters.meter.Meter interface.

Meter

AP Meter

AUC Meter

Average Value Meter

Class Error Meter

Confusion Meter

Map Meter

Moving Average Value Meter

MSE Meter

Precision-Recall-F1 Meter

Contrib

	DL

	Callbacks

	NN

	Criterion

	Modules

	Optimizers

	Schedulers

	Models

	Segmentation

	Registry

	Utilities

	Argparse

	Compression

	Confusion Matrix

	Dataset

	Misc

	Pandas

	Parallel

	Plotly

	Serialization

	Visualization

	Tools

	Tensorboard

DL

Callbacks

NN

Criterion

Modules

Optimizers

Schedulers

Models

Segmentation

Registry

catalyst subpackage registries

Utilities

Argparse

Compression

Confusion Matrix

Dataset

Misc

Pandas

Parallel

Plotly

Serialization

Visualization

Tools

Tensorboard

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 catalyst	

 	
 	
 catalyst.contrib.registry	

 	
 	
 catalyst.data.augmentor	

 	
 	
 catalyst.tools.frozen_class	

 	
 	
 catalyst.tools.registry	

 	
 	
 catalyst.tools.time_manager	

Index

 _
 | A
 | C
 | F
 | G
 | L
 | R
 | S
 | T

_

 	
 	__init__() (catalyst.data.augmentor.Augmentor method)

 	(catalyst.data.augmentor.AugmentorCompose method)

 	(catalyst.data.augmentor.AugmentorKeys method)

 	(catalyst.tools.registry.Registry method)

 	(catalyst.tools.registry.RegistryException method)

 	(catalyst.tools.time_manager.TimeManager method)

A

 	
 	add() (catalyst.tools.registry.Registry method)

 	add_from_module() (catalyst.tools.registry.Registry method)

 	all() (catalyst.tools.registry.Registry method)

 	
 	Augmentor (class in catalyst.data.augmentor)

 	AugmentorCompose (class in catalyst.data.augmentor)

 	AugmentorKeys (class in catalyst.data.augmentor)

C

 	
 	catalyst.contrib.registry (module)

 	catalyst.data.augmentor (module)

 	
 	catalyst.tools.frozen_class (module)

 	catalyst.tools.registry (module)

 	catalyst.tools.time_manager (module)

F

 	
 	FrozenClass (class in catalyst.tools.frozen_class)

G

 	
 	get() (catalyst.tools.registry.Registry method)

 	get_from_params() (catalyst.tools.registry.Registry method)

 	
 	get_if_str() (catalyst.tools.registry.Registry method)

 	get_instance() (catalyst.tools.registry.Registry method)

L

 	
 	late_add() (catalyst.tools.registry.Registry method)

 	
 	len() (catalyst.tools.registry.Registry method)

R

 	
 	Registry (class in catalyst.tools.registry)

 	
 	RegistryException

 	reset() (catalyst.tools.time_manager.TimeManager method)

S

 	
 	start() (catalyst.tools.time_manager.TimeManager method)

 	
 	stop() (catalyst.tools.time_manager.TimeManager method)

T

 	
 	TimeManager (class in catalyst.tools.time_manager)

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Catalyst

 		
 Core

 		
 Core

 		
 Experiment

 		
 Runner

 		
 Callback

 		
 State

 		
 Callbacks

 		
 Checkpoint

 		
 Criterion

 		
 Early Stop

 		
 Exception

 		
 Logging

 		
 Metrics

 		
 Optimizer

 		
 Scheduler

 		
 Timer

 		
 Validation

 		
 Registry

 		
 Utils

 		
 DL

 		
 Experiment

 		
 Runner

 		
 Callbacks

 		
 Metrics

 		
 Utils

 		
 Registry

 		
 Data

 		
 Scripts

 		
 Augmentor

 		
 Collate Functions

 		
 Dataset

 		
 Reader

 		
 Sampler

 		
 Utilities

 		
 Utils

 		
 Checkpoint

 		
 Config

 		
 Distributed

 		
 Hash

 		
 Initialization

 		
 Misc

 		
 Numpy

 		
 Parser

 		
 Scripts

 		
 Seed

 		
 Sys

 		
 Torch

 		
 Tools

 		
 Frozen Class

 		
 Registry

 		
 Time Manager

 		
 Typing

 		
 Metrics

 		
 Accuracy

 		
 Dice

 		
 F1 score

 		
 Focal

 		
 IoU

 		
 Meters

 		
 Meter

 		
 AP Meter

 		
 AUC Meter

 		
 Average Value Meter

 		
 Class Error Meter

 		
 Confusion Meter

 		
 Map Meter

 		
 Moving Average Value Meter

 		
 MSE Meter

 		
 Precision-Recall-F1 Meter

 		
 Contrib

 		
 DL

 		
 Callbacks

 		
 NN

 		
 Criterion

 		
 Modules

 		
 Optimizers

 		
 Schedulers

 		
 Models

 		
 Segmentation

 		
 Registry

 		
 Utilities

 		
 Argparse

 		
 Compression

 		
 Confusion Matrix

 		
 Dataset

 		
 Misc

 		
 Pandas

 		
 Parallel

 		
 Plotly

 		
 Serialization

 		
 Visualization

 		
 Tools

 		
 Tensorboard

_images/catalyst_logo.png
CAtalyst

_static/ajax-loader.gif

